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Figure S1. Modification of soil NOx emission parameterization in the GEOS-Chem 

model. Panel (a) shows the difference between soil temperature and that derived from 
2m temperature in June-July, 2019. Panel (b) shows the default and updated temperature 

dependence term f(T) in the model.  
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Figure S2. Soil NOx emissions from the default and updated parameterization in 
GEOS-Chem and their comparison to observations. Panels (a) shows soil NOx 

emissions estimated from the default parameterizations averaged for the June-July, 
2019. Panel (b) shows the difference of emissions in percentage. Panel (c) compares 

the estimated soil NOx emissions with reported values from the literatures (Table S1) at 
the corresponding time and locations. Open and filled symbols represent results from 
the default and updated schemes, respectively. 
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Figure S3. Monthly variation of soil NOx emissions in the North China Plain, 2019. 
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Figure S4. f(SWC) from Oswald et al. (2013) (a) and Wu et al. (2019) (b-l). 
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Figure S5. Comparison of soil moisture from different dataset, June-July 2019. Panel 
(a) shows the soil moisture from the MERRA2 dataset, defined as the volume of water 

within the volume of bulk soil in the topmost 0-5 cm surface layer. Panel (b) and (c) 
are volumetric soil water from the SMCI dataset (Li et al., 2022) and ERA5,  

respectively. Note that the soil moisture from different dataset refer to different soil 
depths. 
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Figure S6. Soil HONO emissions estimated in this study and comparison with other 
studies. Panel (a) and (b) shows the estimated soil HONO emissions in 2017 assuming 

only dry peak of f(SWC) (Oswald et al., 2013) and both the dry and wet peaks of f(SWC) 
(Wu et al., 2019, adopted in this study), respectively. Panel (c) shows the soil HONO 

emissions in 2017 from Wu et al. (2022). The total emissions for the North China Plain 
(NCP) and China are shown inset. Panel (d) shows the comparison of our estimate with 
reported values in literatures. The bars denote the range from observational reports 

(Table S2). 
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Figure S7. The trend of soil temperature in China and NCP in June-July 2013-2019. 
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Figure S8. The cumulative distribution function (CDF) of observed and simulated daily 
MDA8 ozone concentrations at all sites in China (a) and the North China Plain (b).  
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Figure S9. GEOS-Chem simulated surface daily maximum 8-h average (MDA8) ozone 
levels and soil ozone contributions at four regions. The top of panel (a) compares the 

time series of observed (black line) and modeled (BASE and DEFAULT) ozone (red 
line and blue lines) averaged in NCP region, with temporal correlation coefficients (r) 

shown in the inset. The bottom of panel (a) shows the time series of ozone enhancement 
from soil Nr (black line), soil HONO (blue line), and soil NOx (red line) emissions, and 
daily maximum 2 m air temperature (TMAX, grey line, right y axis). Panels (b), (c), 

and (d) are the same as Panels (a) but for SCB, YRD, and PRD, respectively. 
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Figure S10. The time series of observed (black line) and modeled (BASE and 

DEFAULT) HONO concentration (red line and blue line) in Wangdu in June 2017.1 
Numbers in the parentheses denote the normalized mean bias of the simulated HONO 
concentrations . 
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Figure S11. Spatial distribution of surface 𝐻2𝑂2 𝐻𝑁𝑂3⁄  ratio in China in June-Jul 
2019. Mean values ± standard deviation averaged over the model grids are shown inset.  
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Figure S12. The difference of surface OH concentration between BASE and 

noSHONO in percentage. Mean values ± standard deviation averaged over the model 
grids are shown inset. 
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Figure S13. The difference between soil Nr ozone enhancement (Fig.3d) and additive 
ozone enhancement from soil NOx (Fig.3b) and HONO (Fig.3c). Mean values ± 

standard deviation averaged over the model grids are shown inset. 
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Figure S14. Response of surface ozone due to anthropogenic emission change since 

2013. Panel (a), (b) and (c) show the differences of ozone between BASE and 
Fix_Ant2013 in 2015, 2017 and 2019, respectively. 
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Table S1. Comparison of above canopy soil NOx flux (ng N m-2 s-1) in this study with 
the field measurements over China.  
Location Lon Lat time Observation  Default Base Reference 

1 Beijing 116.5 39.8 2017 15.2 8.3 7.5 Wu et al.  

(2019)2 

2 Shangdong 119.0 37.8 2017 2.9 1.6 3.3 Wu et al.  

(2019)2 

3 Shanxi 110.7 34.9 2008.08 42.34 14.2 18.7 Liu et al.  

(2011)3 

4 Hubei 110.7 32.1 2017 2.9 0.3 0.5 Wu et al.  

(2019)2 

5 Jiangsu 

Wuxi 

120.5 31.6 2002.06-

2003.05 

1.4 4.2 4.2 Zhou et al.  

(2010)4 

6 Jiangsu 

Changshu 

120.7 31.6 2005.11 11.4 3.6 2.4 Liu et al.  

(2006)5 

7 Zhejiang 120.7 30.8 2006.03-06 24.2 4.7 5.6 Fang and 

Mu 

(2007)6 

8 Guangdong 112.5 23.2 2005.04-09 16 

 

2.5 2.6 Li et al.  

(2007)7 

9 Hainan 109.5 19.5 2010.02-09 25.1 7.6 9.7 Huo et al.  

(2012)8 
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Table S2. Comparison of soil HONO emissions (ng N m-2 s-1) in this study with the 
field measurements over China.  
Location Longitude Latitude time Observati

on  

Calculation Reference 

1 Hebei 115.2 38.7 2017.06 19.11 15.08 Xue et al.  

(2021)9 

2 Hebei 115.3 38.7 2017.06 0-40 5.54 Tang et al.  

(2019)10 

3 Hebei 115.7 38.7 2015.08 1.89-21 12.28 Xue et al.  

(2019)11 

4 Anhui 116.8 32.4 2019.11 2.94 2.95 Tang et al.  

(2020)12 

5 Shanghai 121.0 31.1 2018.09 0-8.59 4.16 Wu et al.  

(2020)13  

6 Shanghai 121.0 30.6 2018.09 0-4.24 0 Wu et al.  

(2020)13 
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